1.5 Amp Output Current IGBT Gate Drive Optocoupler

Technical Data

Features

- Input Threshold Current (IFLH): 5 mA (Max.)
- Supply Current (ICC): 11 mA (Max.)
- Supply Voltage (V_{CC}): 15-35 V
- Output Current (Io): ± 0.5 A (Min.)
- Switching Time ($\mathbf{t}_{\text {PLH }} / \mathbf{t}_{\text {PHL }}$): $0.5 \mu \mathrm{~s}$ (Max.)
- Isolation Voltage (VISO): 2500 Vrms (Min.)
- UL 577 Recognized:

File No. 555361

- CSA Approved
- VDE 0884 Approved with $\mathrm{V}_{\text {IORM }}=630 \mathrm{~V}_{\text {peak }}$
- $8 \mathrm{kV} / \mu \mathrm{s}$ Minimum Common Mode Rejection (CMR) at Vcm $=1500$ V
- Creepage Distance: $\mathbf{7 . 4} \mathbf{~ m m}$. Clearance: 7.1 mm .

Applications

- IGBT/MOSFET Gate Drive
- AC/Brushless DC Motor Drives
- Industrial Inverters
- Switch Mode Power Supplies

Description

The HCPL-T250 contains GaAs LED. The LED is optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by this optocoupler makes it ideally suited for directly driving IGBTs with ratings up to $1200 \mathrm{~V} / 25 \mathrm{~A}$. For IGBTs with higher ratings, the HCPL-T250 can be used to drive a discrete power stage which drives the IGBT gate.

Ordering Information

Specify Part Number followed by Option Number.

Example:

$$
\begin{aligned}
\hline & \text { No Option }=\text { Standard DIP Package, } 50 \text { per tube. } \\
\hdashline 060= & \text { VDE } 0884 \mathrm{~V}_{\text {IORM }}=630 \mathrm{~V}_{\text {peak }} \text { Option, } \\
& 50 \text { per tube. } \\
-300= & \text { Gull Wing Surface Mount Option, } \\
& 50 \text { per tube. } \\
500= & \text { Tape and Reel Packaging Option, } \\
& 1000 \text { per reel. }
\end{aligned}
$$

Functional Diagram

Truth Table

LED	$\mathbf{V}_{\text {out }}$
ON	LOW
OFF	HIGH

A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

[^0]
Package Outline Drawings

Standard DIP Package

Gull Wing Surface Mount Option 300

DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 inches).

Regulatory Information

The HCPL-T250 has been approved by the following organizations:

UL

Recognized under UL 1577,
Component Recognition
Program, File E55361.

CSA

Approved under CSA
Component Acceptance
Notice \#5, File CA 88324.

VDE

Approved under
VDE 0884/06.92 with
$\mathrm{V}_{\text {IORM }}=630 \mathrm{~V}_{\text {peak }}$.

Insulation and Safety Related

Parameter	Symbol	Value	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Insulation thickness between emitter and detector; also known as distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	≥ 175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)

Absolute Maximum Ratings (Compared with HCPL-3120)

Parameter	Symbol	Units	HCPL-3120		HCPL-T250		Note
			Min.	Max.	Min.	Max.	
Operating Temperature	T_{A}	${ }^{\circ} \mathrm{C}$	-40	100	-20	70	
"High" Peak Output Current	$\mathrm{I}_{\mathrm{OH} \text { (PEAK) }}$	A		2.5		1.5	1
"High" Peak Output Current	$\mathrm{I}_{\text {OL(PEAK) }}$	A		2.5		1.5	
Storage Temperature	T_{S}	${ }^{\circ} \mathrm{C}$	-55	125	-55	125	
Average Input Current	$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$	mA		25		20	2
Peak Transient Input Current ($<1 \mu$ s Pulse Width, 300 pps)	$\mathrm{I}_{\text {(TRAN }}$	A		1.0		1.0	
Reverse Input Voltage	V_{R}	V		5		5	
Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	V	0	35	0	35	
Output Voltage	V_{O}	V	0	V_{CC}	0	V_{CC}	
Output Power Dissipation	P_{O}	mW		250		250	3
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for $10 \mathrm{sec} ., 1.6 \mathrm{~mm}$ below seating plane						
Solder Reflow Temperature Profile	See Package Outline Drawings section						

Notes:

1. Maximum pulse width $=10 \mu \mathrm{~s}$, maximum duty cycle $=0.2 \%$. See HCPL-3120 Applications section for additional details on limiting IOH(PEAK).
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate lineraly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	15	30	V
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	7	16	mA
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.0	0.8	V

DC Electrical Specifications (Compared with HCPL-3120)
Over recommended operating conditions $\left(\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7\right.$ to $16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=-3.0$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15$ to 30 V , $\mathrm{V}_{\mathrm{EE}}=$ Ground) unless otherwise specified.

Parameter	Symbol	Units	HCPL-3120			HCPL-T250			Test Conditions	Note
			Min.	Typ.*	Max.	Min.	Typ.*	Max.		
Input Forward Voltage	V_{F}	V	1.2	1.5	1.8		1.6	1.8	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	
Temperature Coefficient of Forward Voltage	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		-1.6			-2.0		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	
Input Reverse Current	I_{R}	$\mu \mathrm{A}$			10			10	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	
Input Capacitance	$\mathrm{C}_{\text {IN }}$	pF		60			60	250	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$	
High Level Output Current	I_{OH}	A	0.5	1.5		0.5	1.5		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}-4 \mathrm{~V}$	
			2.0			N.A.			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}-15 \mathrm{~V}$	
Low Level Output Current	$\mathrm{I}_{\text {OL }}$	A	0.5	2.0		0.5	2.0		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}-4 \mathrm{~V}$	
			2.0			N.A.			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-15 \mathrm{~V}$	
High Level Output Voltage	V_{OH}	V	$\mathrm{V}_{\mathrm{CC}}-4$	$\mathrm{V}_{\mathrm{CC}}-3$		$\mathrm{V}_{\mathrm{CC}}-4$	$\mathrm{V}_{\mathrm{CC}}-3$		$\mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}$	
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}$	V		$\mathrm{V}_{\text {EE }}+0.1$	$\mathrm{V}_{\mathrm{EE}}+0.5$		$\mathrm{V}_{\mathrm{EE}}+0.8$	$\mathrm{V}_{\mathrm{EE}}+2.5$	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	
High Level Supply Current	$\mathrm{I}_{\text {CCH }}$	mA		2.0	5		7	11	Output Open $\mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}$	
Low Level Supply Current	$\mathrm{I}_{\text {CCL }}$	mA		2.0	5		7.5	11	$\begin{aligned} & \text { Output Open } \\ & \mathrm{V}_{\mathrm{F}}=-3.0 \text { to } \\ & +0.8 \mathrm{~V} \end{aligned}$	
Threshold Input Current Low to High	$\mathrm{I}_{\mathrm{FLH}}$	mA		2.3	5		1.2	5	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V} \end{aligned}$	
Threshold Input Voltage High to Low	$\mathrm{V}_{\text {FHL }}$	V	0.8			0.8				
Supply Voltage	$\mathrm{V}_{\text {CC }}$	V	15		30	15		30		
Capacitance (Input-Output)	$\mathrm{C}_{\text {I-0 }}$	pF		0.6			1.0			
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{I}-0}$	Ω		10^{12}			10^{12}			

[^1]
Switching Specifications (AC) (Compared with HCPL-3120)

Over recommended operating conditions $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7$ to $16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=-3.0$ to 0.8 V , $\mathrm{V}_{\mathrm{CC}}=15$ to $30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground) unless otherwise specified.

Parameter	Symbol	Units	$\begin{gathered} \text { HCPL-3120 } \\ \left(-40^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}\right) \end{gathered}$			$\begin{gathered} \text { HCPL-T250 } \\ \left(-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}\right) \end{gathered}$			Test Conditions		Note
			Min.	Typ.*	Max.	Min.	Typ.*	Max.			
Propagation Delay Time to High Output Level	$\mathrm{t}_{\text {PHL }}$	$\mu \mathrm{s}$	0.1	0.27	0.5		0.27	0.5	$\begin{aligned} & \mathrm{Rg}=10 \Omega \\ & \mathrm{Cg}=10 \mathrm{nF} \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \end{aligned}$		
Propagation Delay Time to Low Output Level	$\mathrm{T}_{\text {PLH }}$	$\mu \mathrm{s}$	0.1	0.3	0.5		0.3	0.5			
Output Rise Time	t_{R}	$\mu \mathrm{s}$		0.1		N.A.					
Output Fall Time	t_{F}	$\mu \mathrm{s}$		0.1		N.A.					
Pulse Width Distortion	PWD	$\mu \mathrm{s}$			0.3			N.A.			
Propagation Delay Difference Between Any Two Parts	$\begin{gathered} \left(\mathrm{t}_{\text {PHL }}-\right. \\ \left.\mathrm{t}_{\text {PLH }}\right) \\ \text { PDD } \end{gathered}$	$\mu \mathrm{s}$	-0.35		0.35	N.A.		N.A.			4
Output High Level Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	$\mathrm{kV} / \mu \mathrm{s}$	15	30		5			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		5
									$\begin{array}{\|l\|l\|} \hline \text { HCPL } \\ -3120 \end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V} \end{aligned}$	
									$\begin{array}{\|l\|l\|} \hline \text { HCPL } \\ \text {-T250 } \end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CM}}=600 \mathrm{~V} \end{aligned}$	
Output Low Level Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	kV/ $/ \mathrm{s}$	15	30		5			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V} \end{aligned}$		5
									$\begin{aligned} & \text { HCPL } \\ & -3120 \end{aligned}$	$\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$	
									$\begin{aligned} & \text { HCPL } \\ & \text {-T250 } \end{aligned}$	$\mathrm{V}_{\mathrm{CM}}=600 \mathrm{~V}$	

*All typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise noted.

Notes:

4. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two HCPL-3120 parts under the same test condition.
5. Common mode transient immunity in the high state is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in the high state (i.e., $\mathrm{V}_{\mathrm{O}}>15.0 \mathrm{~V}$).
6. Common mode transient immunity in a low state is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in a low state (i.e., $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).

Agilent Technologies

Innovating the HP Way

Data subject to change.
Copyright © 1999 Agilent Technologies

[^0]: CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^1]: *All typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3^{\circ} \mathrm{V}$, unless otherwise noted.

